About Microbes and Environments

Microbes and Environments (M&E) is an international, peer-reviewed, open access journal devoted to the publication of original and review articles regarding all aspects of research on microbial ecology and environmental microbiology. It is published quarterly in a printed and an electronic version by Japanese Society of Microbial Ecology (JSME), Japanese Society of Soil Microbiology (JSSM), Taiwan Society of Microbial Ecology (TSME), and Japanese Society of Plant Microbe Interactions (JSPMI).

M&E has an Impact Factors of 2.231 (2-yr) and 2.144 (5-yr) according to the 2014 Journal Citation Reports.

Benefits for Authors

- Open access policy for electric publication in PubMed, PubMed Central, and J-Stage
- Included in Web of Science® by Thomson Reuters
- Reasonable page charges: ¥4,000/page for JSME/JSSM/TSME/JSPMI members
 ¥8,000/page for non-members

Interest of the Journal

Articles can deal with cultured and non-cultured forms of any type of microorganism: bacteria, archaea, fungi, yeasts, protozoa, algae and viruses.
 · Microbial ecology in seawater, river water, soil, food and waste
 · Microbial degradation of xenobiotic compounds
 · Microbial processes in biogeochemical cycles
 · Microbial interactions and signalings with animals and plants
 · Interactions among microorganisms
 · Phylogenetic and functional diversity of microbial communities
 · Genomics, metagenomics and bioinformatics for microbiology
 · Application of microorganisms to agriculture, fishery, and industry
 · Molecular biology and biochemistry of microorganisms
 · Molecular and genomic technologies in microbial ecology
 · Methodology in general and environmental microbiology
 · Interdisciplinary research areas for microbial ecology

Message from Editor-in-Chief

Yoichi Kamagata
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Microbes and Environments is now becoming one of the important journals for microbial ecology. The journal is being edited by four academic societies but the submission is open to all of the researchers including non-members. In fact, we are receiving manuscripts from non-members all over the world. Microbes and Environments is an open access and freely available online journal. Once the manuscript is accepted, it will be published immediately after proof corrections so that readers can see and read the paper in a timely fashion. Different from commercial journals, we are providing the publication opportunity with an affordable price. We look forward to receiving your high quality manuscripts.

Submit Your Manuscript

http://www.microbes-and-environments.jp/
Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha⁻¹, respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a ¹³C methane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems.

Comment from Committee

To date, many studies of the microbial ecosystem in the rhizosphere have mainly focused on the biological interactions; namely, development, competition, inhibition, and promotion of a biological relationship between host plants and rhizosphere microbiome. However, the biogeochemical impact caused by rhizosphere microbiome remains obscure due to the absence of comprehensive study using combination of molecular biological and geochemical approaches. This study showed that suppression of nitrogen fertilizers resulted in increased methane and sulfur oxidation in the rhizosphere and induced oxidative metabolism as well as nitrogen fixation. In contrast, loading of nitrogen fertilizers resulted in increased methane production in the rhizosphere, induced reductive metabolism, and inhibited nitrogen fixation. These results clearly indicated that the addition of nitrogen fertilizers had significant effects on not only rhizobial symbiosis but also biogeochemical cycle.
The class Thermoplasmata harbors huge uncultured archaeal lineages at the order level, so-called Groups E2 and E3. A novel archaeon Kj51a affiliated with Group E2 was enriched from anaerobic sludge in the present study. Clone library analysis of the archaeal 16S rRNA and merA1 genes confirmed a unique archaeal population in the enrichment culture. The 16S rRNA gene-based phylogeny revealed that the enriched archaeon Kj51a formed a distinct cluster within Group E2 in the class Thermoplasmata together with Methanomassiliicoccus luminyensis B102 and environmental clone sequences derived from anaerobic digesters, bovine rumen, and landfill leachate. Archaeon Kj51a showed 87.7% 16S rRNA gene sequence identity to the closest cultured species, M. luminyensis B102, indicating that archaeon Kj51a might be phylogenetically novel at least at the genus level. In fluorescence in situ hybridization analysis, archaeon Kj51a was observed as coccolid cells completely corresponding to the archaeal cells detected, although bacterial rod cells still coexisted. The growth of archaeon Kj51a was dependent on the presence of methanol and yeast extract, and hydrogen and methane were produced in the enrichment culture. The addition of 2-bromoethanesulfonate to the enrichment culture completely inhibited methane production and increased hydrogen concentration, which suggested that archaeon Kj51a is a methanol-reducing hydrogenotrophic methanogen. Taken together, we propose the provisional taxonomic name Candidatus Methanogramnan caeniola, for the enriched archaeon Kj51a belonging to Group E2. We also propose to place the methanogenic lineage of the class Thermoplasmata in a novel order, Methanomassiliicoccales ord. nov.
Are Uncultivated Bacteria Really Uncultivable?
Indun Dewi Puspita¹, Yoichi Kamagata², Michiko Tanaka¹, Kozo Asano¹, Cindy H. Nakatsu¹,³
¹Graduate School of Agriculture, Hokkaido University, Japan; ²Bioproduction Research Institute, National Institute of Advanced
Industrial Science and Technology (AIST), Japan; and ³Department of Agronomy, Purdue University, West Lafayette, Indiana
47907, USA

Many strategies have been used to increase the number of bacterial cells that can be grown from environmental samples but cultivation efficiency remains a challenge for microbial ecologists. The difficulty of cultivating a fraction of bacteria in environmental samples can be classified into two non-exclusive categories. Bacterial taxa with no cultivated representatives for which appropriate laboratory conditions necessary for growth are yet to be identified. The other class is cells in a non-dividing state (also known as dormant or viable but not culturable cells) that require the removal or addition of certain factors to re-initiate growth. A number of strategies, from simple to high throughput techniques, are reviewed that have been used to increase the cultivation efficiency of environmental samples. Some of the underlying mechanisms that contribute to the success of these cultivation strategies are described. Overall this review emphasizes the need of researchers to first understand the factors that are hindering cultivation to identify the best strategies to improve cultivation efficiency.

Syntrophic Acetate-Oxidizing Microbes in Methanogenic Environments
Satoshi Hattori¹
¹Department of Bioresource Engineering, Faculty of Agriculture, Yamagata University, Japan

Acetate is one of the most important intermediates for methanogenesis in the anaerobic mineralization of organic materials. Methanogenic acetate degradation is carried out by either an aceticlastic reaction or an anaerobic acetate-oxidizing reaction. In contrast to the former reaction, the latter is energetically extremely unfavorable. However, the oxidation of acetate can occur with syntrophic interaction between certain bacteria and methanogenic archaea. The bacteria, namely syntrophic acetate-oxidizing bacteria, can oxidize acetate to produce hydrogen/CO₂ only when their products are subsequently utilized by the hydrogen-scavenging methanogens. Surprisingly, some of these bacteria can also axenically grow on hydrogen/CO₂ to produce acetate. This means that the bacteria can utilize both substrates and products reversibly. This review describes current studies of these curious and fascinating microbes.
Biotechnological Aspects of Microbial Extracellular Electron Transfer

Souichiro Kato1,2,3
1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan; 2Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Japan; and 3Research Center for Advanced Science and Technology, The University of Tokyo, Japan

Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed.

Effect of Probiotics/Prebiotics on Cattle Health and Productivity

Yutaka Uyeno1, Suguru Shigemori1,3, Takeshi Shimosato1,2
1Faculty of Agriculture, Shinshu University, Japan; 2Interdisciplinary Graduate School of Science and Technology, Shinshu University, Japan; and 3Research Fellow of the Japan Society for the Promotion of Science (JSPS)

Probiotics/prebiotics have the ability to modulate the balance and activities of the gastrointestinal (GI) microbiota, and are, thus, considered beneficial to the host animal and have been used as functional foods. Numerous factors, such as dietary and management constraints, have been shown to markedly affect the structure and activities of gut microbial communities in livestock animals. Previous studies reported the potential of probiotics and prebiotics in animal nutrition; however, their efficacies often vary and are inconsistent, possibly, in part, because the dynamics of the GI community have not been taken into consideration. Under stressed conditions, direct-fed microbials may be used to reduce the risk or severity of scour caused by disruption of the normal intestinal environment.

The observable benefits of prebiotics may also be minimal in generally healthy calves, in which the microbial community is relatively stable. However, probiotic yeast strains have been administered with the aim of improving rumen fermentation efficiency by modulating microbial fermentation pathways. This review mainly focused on the benefits of probiotics/prebiotics on the GI microbial ecosystem in ruminants, which is deeply involved in nutrition and health for the animal.
Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by *Ralstonia solanacearum*

Yuliar1,2, Yanetri Asi Nion3,1, Koki Toyota2

1Research Center for Biology, Indonesian Institute of Sciences (LIPI), Indonesia; 2Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Japan; and 3Palangka Raya University Jl. Yos Sudarso, Center of Kalimantan, Palangka Raya, Indonesia

Previous studies have described the development of control methods against bacterial wilt diseases caused by *Ralstonia solanacearum*. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of *R. solanacearum*, *Pseudomonas* spp., *Bacillus* spp., and *Streptomyces* spp. are well-known BCAs. New or uncommon BCAs have also been identified such as *Acinetobacter* sp., *Burkholderia* sp., and *Paenibacillus* sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases.

Table 1. Various biocontrol agents that have been tested in the field to control bacterial wilt diseases caused by *Ralstonia solanacearum* (2005–2014)

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Inoculation method and application rate</th>
<th>Mechanisms</th>
<th>BE (%)</th>
<th>Yield*</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bacillus amyloliquefaciens SQR-7 and SQR-101 and B. methyloliquefaciens SQR-29</td>
<td>6.8 × 10^10 cfu plant^-1 (SQR-7), 7.5 × 10^10 cfu plant^-1 (SQR-101), 8.2 × 10^10 cfu plant^-1 (SQR-7)</td>
<td>Production of indole acetic acid and siderophores</td>
<td>18-60% in tobacco</td>
<td>25-38%</td>
<td>143</td>
</tr>
<tr>
<td>2. Ralstonia picketti QL-A6</td>
<td>Stem injection, 10 μL of 10 CFU mL^-1</td>
<td>Competition</td>
<td>73% in the tomato</td>
<td>NA</td>
<td>125</td>
</tr>
<tr>
<td>3. Pseudomonas monteilii (A) + Gliomus fasciculatum (B)</td>
<td>Stem cuttings were dipped in A (9.1 × 10^6 mL^-1), B (53 infective propagules) was added to each cutting, and A was then poured again</td>
<td>Increased plant nutrient uptake (N, P, K) and reduced the pathogen population</td>
<td>56-75% in herbs (Colers fokskoh)</td>
<td>54%</td>
<td>111</td>
</tr>
<tr>
<td>4. Brevibacillus brevis L-25 + Streptomyces roche L-9 + organic fertilizer</td>
<td>Mixed soil at a density of 7.3 × 10^7 L-25 and 5.0 × 10^8 L-9 g^-1 of soil</td>
<td>Decreased root colonization by the pathogen</td>
<td>30-95% in tobacco</td>
<td>87-100%</td>
<td>76</td>
</tr>
<tr>
<td>5. Bacillus amyloliquefaciens + bio-organic fertilizer (BIO23)</td>
<td>Mixed soil at a density of 5.5 × 10^5 BIO23 g^-1 of soil</td>
<td>Plant growth promotion</td>
<td>58-66% in the potato</td>
<td>64-65%</td>
<td>25</td>
</tr>
<tr>
<td>6. Bacillus sp. (RC6h) Pseudomonas malsie (RB4)</td>
<td>3 × 10^10 g^-1 (talc formulation). Seedlings were dipped in antagonist suspension (25 g talc formulation L^-1). Leftover suspension was poured around the root zone of the seedling (50 mL plant^-1)</td>
<td>Production of inhibitory compounds and siderophores</td>
<td>81% in the eggplant</td>
<td>60-90%</td>
<td>103</td>
</tr>
<tr>
<td>7. Trichoderma viride (A), B. subtilis (B), Azotobacter chroococcum (C), Gliomus fasciculatum (D), P. fluoroceans (E)</td>
<td>D (53 infective propagules) was added to each stem cutting that was dipped in A (1.2 × 10^8 CFU mL^-1), B (1.8 × 10^7 CFU mL^-1), C (2.3 × 10^6 CFU mL^-1), and E (2.5 × 10^5 CFU mL^-1). A total of 5 mL of A, B, C, and E was then poured into 200 g soil.</td>
<td>Competition for nutrient uptake (NPK)</td>
<td>7-43% in herbs (Colers fokskoh)</td>
<td>159-227%</td>
<td>110</td>
</tr>
<tr>
<td>8. B. amyloliquefaciens QL-5, QL-18 + organic fertilizer</td>
<td>Mixed soil at a density of 1 × 10^7 (QL-5) or 1 × 10^7 (QL-18) g^-1 of soil</td>
<td>Decreased root colonization by the pathogen</td>
<td>17-87% in the tomato</td>
<td>NA</td>
<td>124</td>
</tr>
<tr>
<td>9. B. amyloliquefaciens Bc-C31</td>
<td>Poured 10 mL of bacterial suspension plant^-1 (potato dextrose broth culture).</td>
<td>Production of antimicrobial proteins</td>
<td>60-80% in Capiscum</td>
<td>NA</td>
<td>44</td>
</tr>
<tr>
<td>10. Azotobacter sp. Xa6, Enterobacter sp. Xy3</td>
<td>Poured 20 mL of the bacterial suspension (1 × 10^4 cells mL^-1) plant^-1 and seedling roots were soaked in the bacterial suspension.</td>
<td>Rhizocompetence and root colonization</td>
<td>32-41% in the tomato</td>
<td>57-67%</td>
<td>130</td>
</tr>
<tr>
<td>11. B. vallismortis ExTN-1</td>
<td>Bacterial suspension was mixed into an organic fertilizer (10^6 CFU mL^-1) and poured onto soil.</td>
<td>Induction of systemic resistance</td>
<td>48-49% in the tomato</td>
<td>17%</td>
<td>119</td>
</tr>
<tr>
<td>12. Glomus mosseae</td>
<td>A total of 30 g of the inoculum (650-700 spores of G. mosseae 100 g^-1 soil) was added to a planting hole.</td>
<td>Competition for nutrients and decreased pathogen population</td>
<td>25% in the tomato</td>
<td>16%</td>
<td>113</td>
</tr>
</tbody>
</table>

BE: biological control efficacy, NA: not applicable, Yield*: increase in yield
Microbial Existence in Controlled Habitats and Their Resistance to Space Conditions

Kasthuri Venkateswaran1, Myron T. La Duc2, and Gerda Horneck2
1Biotechnology and Planetary Protection Group, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91109, USA; and 2Institute of Aerospace Medicine, DLR (German Aerospace Center), D 51170, Köln, Germany

The National Research Council (NRC) has recently recognized the International Space Station (ISS) as uniquely suitable for furthering the study of microbial species in closed habitats. Answering the NRC’s call for the study, in particular, of uncommon microbial species in the ISS, and/or of those that have significantly increased or decreased in number, space microbiologists have begun capitalizing on the maturity, speed, and cost-effectiveness of molecular/genomic microbiological technologies to elucidate changes in microbial populations in the ISS and other closed habitats. Since investigators can only collect samples infrequently from the ISS itself due to logistical reasons, Earth analogs, such as spacecraft-assembly clean rooms, are used and extensively characterized for the presence of microbes. Microbiologists identify the predominant, problematic, and extremophilic microbial species in these closed habitats and use the ISS as a testbed to study their resistance to extreme extraterrestrial environmental conditions. Investigators monitor the microbes exposed to the real space conditions in order to track their genomic changes in response to the selective pressures present in outer space (external to the spacecraft) and the spaceflight (in the interior of the spacecraft). In this review, we discussed the presence of microbes in space research-related closed habitats and the resistance of some microbial species to the extreme environmental conditions of space.

Microbial Monitoring of Crewed Habitats in Space - Current Status and Future Perspectives

Nobuyasu Yamaguchi1, Michael Roberts2, Sarah Castro1, Cherice Oubre4, Koichi Makimura4, Natalie Lays4, Elisabeth Grohmann7, Takashi Sugita4, Tomoaki Ichijo1, and Masao Nasu1
1Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan; 2Space Life Sciences Lab, CASIS, NASA Kennedy Space Center, FL, USA; 3Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA; 4Science, Technology & Engineering Group, Wyle, Texas, USA; 5Laboratory of Space and Environmental Medicine, Graduate School of Medicine, Tokyo University, Japan; 6Molecular and Cellular Microbiology, Belgian Nuclear Research Center SCK-CEN, Mol, Belgium; 7Division of Infectious Diseases, University Medical Center Freiburg, Germany; and 8Department of Microbiology, Meiji Pharmaceutical University, Japan

Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed.
Enteric Pathogen-Plant Interactions: Molecular Connections Leading to Colonization and Growth and Implications for Food Safety

Betsy M. Martínez-Vázquez, Ryan C. Fink, Francisco Diez-Gonzalez, Michael J. Sadowsky

Department of Biology, Hamline University, MN, USA; Department of Food Science and Nutrition, University of Minnesota, MN, USA; Biotechnology Institute, University of Minnesota, MN, USA; Department of Soil, Water and Climate, University of Minnesota, MN, USA

Leafy green vegetables have been identified as a source of foodborne illnesses worldwide over the past decade. Human enteric pathogens, such as Escherichia coli O157:H7 and Salmonella, have been implicated in numerous food poisoning outbreaks associated with the consumption of fresh produce. An understanding of the mechanisms responsible for the establishment of pathogenic bacteria in or on vegetable plants is critical for understanding and ameliorating this problem as well as ensuring the safety of our food supply. While previous studies have described the growth and survival of enteric pathogens in the environment and also the risk factors associated with the contamination of vegetables, the molecular events involved in the colonization of fresh produce by enteric pathogens are just beginning to be elucidated. This review summarizes recent findings on the interactions of several bacterial pathogens with leafy green vegetables. Changes in gene expression linked to the bacterial attachment and colonization of plant structures are discussed in light of their relevance to plant-microbe interactions. We propose a mechanism for the establishment and association of enteric pathogens with plants and discuss potential strategies to address the problem of foodborne illness linked to the consumption of leafy green vegetables.

Ecological Perspectives on Microbes Involved in N-Cycling

Kazuo Isobe, Nobuhito Ohne

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan; and Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan

Nitrogen (N) cycles have been directly linked to the functional stability of ecosystems because N is an essential element for life. Furthermore, the supply of N to organisms regulates primary productivity in many natural ecosystems. Microbial communities have been shown to significantly contribute to N cycles because many N-cycling processes are microbially mediated. Only particular groups of microbes were implicated in N-cycling processes, such as nitrogen fixation, nitrification, and denitrification, until a few decades ago. However, recent advances in high-throughput sequencing technologies and sophisticated isolation techniques have enabled microbiologists to discover that N-cycling microbes are unexpectedly diverse in their functions and phylogenies. Therefore, elucidating the link between biogeochemical N-cycling processes and microbial community dynamics can provide a more mechanistic understanding of N cycles than the direct observation of N dynamics. In this review, we summarized recent findings that characterized the microbes governing novel N-cycling processes. We also discussed the ecological role of N-cycling microbial community dynamics, which is essential for advancing our understanding of the functional stability of ecosystems.
Plant-Microbe Interaction

Microbes Environ. Vol. 29, No. 4, 413–419, 2014

Identification of *Pseudomonas fluorescens* Chemotaxis Sensory Proteins for Malate, Succinate, and Fumarate, and Their Involvement in Root Colonization

Shota Oku¹, Ayaka Komatsu¹, Yutaka Nakashimada¹, Takahisa Tajima¹, Junichi Kato¹

¹Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan.

Pseudomonas fluorescens Pf0-1 exhibited chemotactic responses to l-malate, succinate, and fumarate. We constructed a plasmid library of 37 methyl-accepting chemotaxis protein (MCP) genes of *P. fluorescens* Pf0-1. To identify a MCP for l-malate, the plasmid library was screened using the PA2652 mutant of *Pseudomonas aeruginosa* PA01, a mutant defective in chemotaxis to l-malate. The introduction of Pf01_0728 and Pf01_3768 genes restored the ability of the PA2652 mutant to respond to l-malate. The Pf01_0728 and Pf01_3768 double mutant of *P. fluorescens* Pf0-1 showed no response to l-malate or succinate, while the Pf01_0728 single mutant did not respond to fumarate. These results indicated that Pf01_0728 and Pf01_3768 were the major MCPs for l-malate and succinate, and Pf01_0728 was also a major MCP for fumarate. The Pf01_0728 and Pf01_3768 double mutant unexpectedly exhibited stronger responses toward the tomato root exudate and amino acids such as proline, asparagine, methionine, and phenylalanine than those of the wild-type strain. The *ctaA, ctaB, ctaC* (genes of the major MCPs for amino acids), Pf01_0728, and Pf01_3768 quintuple mutant of *P. fluorescens* Pf0-1 was less competitive than the *ctaA ctaB ctaC* triple mutant in competitive root colonization, suggesting that chemotaxis to l-malate, succinate, and/or fumarate was involved in tomato root colonization by *P. fluorescens* Pf0-1.

Isolation of Mutants of the Nitrogen-Fixing Actinomycete *Frankia*

Kentaro Kakoi¹, Masatoshi Yamamura¹, Toshihito Kamihara¹, Daiki Tamari², Mikiko Abe¹, Toshiki Uchiumi¹, Ken-Ichi Kuchó¹

¹Graduate School of Science and Engineering, Kagoshima University, Japan; and ²Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Japan.

Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of *Frankia* N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of *Frankia* sp. strain Cc13 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5'-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of *Frankia*.
9

The Tomato Wilt Fungus *Fusarium oxysporum* f. sp. *lycopersici* Shares Common Ancestors with Nonpathogenic *F. oxysporum* isolated from Wild Tomatoes in the Peruvian Andes

Keigo Inami1, Takeshi Kashiwa1, Masato Kawabe2, Akiko Onokubo-Okabe3, Nobuko Ishikawa1, Enrique Rodríguez Pérez2, Takuo Hozumi4, Liliana Aragón Caballero5, Fatima Cáceres de Baldarrago6, Mauricio Jiménez Roco7, Khalid A. Madadi8, Tobin L. Peever1, Tohru Teraoka1, Motoichiro Kodama9, Tsutomu Arie1

1Graduate school of Agriculture, Tokyo University of Agriculture and Technology, Japan; 2National Agricultural Research Center (NARC), Japan; 3Department of Plant Breeding, Chapungo Autonomous University, Mexico; 4Interdisciplinary Research Center for Environment and Rural Service, Chapungo Autonomous University, Mexico; 5Department of Plant Pathology, National Agrarian University—La Molina, Peru; 6Department of Biology, National University of San Augustin, Peru; 7Tarapacá University, a la Castilla 6-D, Chile; 8Kahlil University, Afghanistan; 9Department of Plant Pathology, Washington State University, USA; and 10Department of Agriculture, Tottori University, Japan

Fusarium oxysporum is an ascomycetous fungus that is well-known as a soil-borne plant pathogen. In addition, a large population of nonpathogenic *F. oxysporum* (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic *F. oxysporum*, we focused on the tomato (*Solanum lycopersicum*) and its pathogenic *F. oxysporum* f. sp. *lycopersici* (FOL). We collected *F. oxysporum* from wild and transition *Solanum* spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All *F. oxysporum* isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild *Solanum* spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.

Promoting Effects of a Single *Rhodopseudomonas palustris* Inoculant on Plant Growth by *Brassica rapa chinensis* under Low Fertilizer Input

Wai-Tak Wong1, Ching-Han Tseng2, Shu-Hua Hsu2, Hhu-Sheng Lur1, Chia-Wei Mo2, Chu-Ning Huang3, Shu-Chiung Hsu4, Kung-Ta Lee5, Chi-Te Liu6

1Department of Agronomy, National Taiwan University, Taiwan; 2Institute of Biotechnology, National Taiwan University, Taiwan; 3Department of Plant Pathology and Microbiology, National Taiwan University, Taiwan; 4Great Victory Chemical Industry Co., Ltd., Taiwan; 5Department of Biochemical Science and Technology, National Taiwan University, Taiwan; and 6Agricultural Biotechnology Research Center, Academia Sinica, Taiwan

Several *Rhodopseudomonas palustris* strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the *R. palustris* YSC3, YSC4, and PS3 inoculants on *Brassica rapa chinensis* (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×10^6 CFU g^-1 soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.
Metagenomic Analysis of the Bacterial Community Associated with the Taproot of Sugar Beet

Hirohito Tsurumaru, Takashi Okubo, Kazuyuki Okazaki, Megumi Hashimoto, Kaori Kakizaki, Eiko Hanzawa, Hiroyuki Takashashi, Noriyuki Asanome, Fukuyo Tanaka, Yasuyo Sekiyama, Seishi Ikeda, Kiwamu Minamisawa

1Graduate School of Life Science, Tohoku University, Japan; 2Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Japan; 3Yamagata Integrated Agricultural Research Center, Yamagata, Japan; 4Agricultural Research Center, National Agriculture and Food Research Organization, Japan; and 5National Food Research Institute, National Agriculture and Food Research Organization, Japan

We analyzed a metagenome of the bacterial community associated with the taproot of sugar beet (Beta vulgaris L.) in order to investigate the genes involved in plant growth-promoting traits (PGPTs), namely 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA), N$_2$ fixation, phosphate solubilization, pyrroloquinoline quinone, siderophores, and plant disease suppression as well as methanol, succrose, and betaine utilization. The most frequently detected gene among the PGPT categories encoded β-1,3-glucanase (18 per 105 reads), which plays a role in the suppression of plant diseases. Genes involved in phosphate solubilization (e.g., for quinoprotein glucose dehydrogenase), methanol utilization (e.g., for methanol dehydrogenase), siderophore production (e.g., for isochorismate pyruvate lyase), and ACC deaminase were also abundant. These results suggested that such PGPTs are crucially involved in supporting the growth of sugar beet. In contrast, genes for IAA production (iaaM and ipdC) were less abundant (~1 per 105 reads). N$_2$ fixation genes (nifHKD) were not detected; bacterial N$_2$-fixing activity was not observed in the 15N$_2$-feeding experiment. An analysis of nitrogen metabolism suggested that the sugar beet microbiome mainly utilized ammonium and nitroalkane as nitrogen sources. Thus, N$_2$ fixation and IAA production did not appear to contribute to sugar beet growth. Taxonomic assignment of this metagenome revealed the high abundance of Mesorhizobium, Bradyrhizobium, and Streptomyces suggesting that these genera have ecologically important roles in the taproot of sugar beet. Bradyrhizobium-assigned reads in particular were found in almost all categories of dominant PGPTs with high abundance. The present study revealed the characteristic functional genes in the taproot-associated microbiome of sugar beet, and suggest the opportunity to select sugar beet growth-promoting bacteria.

<table>
<thead>
<tr>
<th>ID of KEGG</th>
<th>Gene length</th>
<th>Frequency per 105 reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>K00620</td>
<td>4490</td>
<td>1.020</td>
</tr>
<tr>
<td>K04103</td>
<td>1990</td>
<td>1.020</td>
</tr>
<tr>
<td>K00466</td>
<td>1990</td>
<td>1.020</td>
</tr>
<tr>
<td>K00510</td>
<td>1990</td>
<td>1.020</td>
</tr>
<tr>
<td>K02588</td>
<td>1990</td>
<td>1.020</td>
</tr>
<tr>
<td>K02591</td>
<td>1990</td>
<td>1.020</td>
</tr>
<tr>
<td>K02592</td>
<td>1990</td>
<td>1.020</td>
</tr>
<tr>
<td>K00620</td>
<td>1990</td>
<td>1.020</td>
</tr>
</tbody>
</table>

Cellular Imaging of Cadmium in Resin Sections of Arbuscular Mycorrhizas Using Synchrotron Micro X-ray Fluorescence

Keiichiro Nayauchi, 1 Baodong Chen, Ryuo Ohtomo, Yukari Kuga

1Graduate School of Integrated Arts and Sciences, Hiroshima University, Japan; 2Graduate School of Agriculture, Shinshu University, Japan; and 3Nasu Research Station, NARO Institute of Livestock and Grassland Science, Japan

Arbuscular mycorrhizal (AM) fungi function as extended roots and take an active part in plant acquisition of nutrients and also soil pollutants, such as heavy metals. The objective of this study was to establish a method to observe the localization of cadmium (Cd) Ka at subcellular levels using X-ray fluorescence (XRF) imaging with a synchrotron irradiation microbeam in resin-embedded sections of mycorrhizas. To evaluate the methodology, distributions of Cd in high-pressure-frozen Lotus japonicus—Rhizophagus irregularis mycorrhizal roots were compared between two treatments; Cd was exposed either to the roots or to the extraradical hyphae. Results showed that, in the latter treatment, Cd was restricted to fungal structures, whereas in the former, Cd was detected in cell walls of the two organisms. Plunge-frozen extraradical mycelium of Gigaaspera margarita exposed to Cd showed high signals of Cd in the cell walls and vacuoles, and low in the cytoplasm. With selective staining and elemental mapping by electron-dispersive X-ray spectrometry (EDS), a positive correlation between distributions of Cd and P was revealed in the vacuole, which suggested polyP as a counter ion of Cd. These results indicated that there was no Cd relocation in rapidly frozen resin-embedded materials, therefore supporting the usefulness of this methodology.
Microbial Physiology

Physiological and Transcriptomic Analyses of the Thermophilic, Aceticlastic Methanogen *Methanosaeta thermophila* Responding to Ammonia Stress

Souchiro Kato1,2,3, Konomi Sasaki1,4, Kazuya Watanabe1,5, Isao Yumoto1, Yoichi Kamagata1,2

1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan; 2Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Japan; 3Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; and 4Hokkaido High-Technology College, Japan; 5School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Japan

The inhibitory effects of ammonia on two different degradation pathways of methanogenic acetate were evaluated using a pure culture (*Methanosaeta thermophila* strain P4) and defined co-culture (*Methanobacterium thermautotrophicus* strain TM and *Thermacetogenium phaeum* strain PB), which represented aceticlastic and syntrophic methanogenesis, respectively. Growth experiments with high concentrations of ammonia clearly demonstrated that sensitivity to ammonia stress was markedly higher in *M. thermophila* P4, than in the syntrophic co-culture. *M. thermophila* P4 also exhibited higher sensitivity to high pH stress, which indicated that an inability to maintain pH homeostasis is an underlying cause of ammonia inhibition. Methanogenesis was inhibited in the resting cells of *M. thermophila* P4 with moderate concentrations of ammonia, suggesting that the inhibition of enzymes involved in methanogenesis may be one of the major factors responsible for ammonia toxicity. Transcriptomic analysis revealed a broad range of disturbances in *M. thermophila* P4 cells under ammonia stress conditions, including protein denaturation, oxidative stress, and intracellular cation imbalances. The results of the present study clearly demonstrated that syntrophic acetate degradation dominated over aceticlastic methanogenesis under ammonia stress conditions, which is consistent with the findings of previous studies on complex microbial community systems. Our results also imply that the co-existence of multiple metabolic pathways and their different sensitivities to stress factors confer resiliency on methanogenic processes.

Bioconversion of Styrene to Poly(hydroxyalkanoate) (PHA) by the New Bacterial Strain *Pseudomonas putida* NBUS12

Giin-Yu Amy Tan1,2, Chia-Lung Chen1, Liya Ge1, Ling Li1, Swee Ngin Tan1, Jing-Yuan Wang1,2

1Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; 2Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore; and 3Natural Sciences and Social Education Academic Group, Nanyang Technological University, Singapore

Styrene is a toxic pollutant commonly found in waste effluents from plastic processing industries. We herein identified and characterized microorganisms for bioconversion of the organic eco-pollutant styrene into a valuable biopolymer medium-chain-length poly(hydroxyalkanoate) (mcl-PHA). Twelve newly-isolated styrene-degrading Pseudomonads were obtained and partial *phaC* genes were detected by PCR in these isolates. These isolates assimilated styrene to produce mcl-PHA, forming PHA contents between 0.05±0.00 and 23.10±3.25% cell dry mass (% CDM). The best-performing isolate was identified as *Pseudomonas putida* NBUS12. A genetic analysis of 16S rDNA and *phaZ* genes revealed *P. putida* NBUS12 as a genetically-distinct strain from existing phenotypically-similar bacterial strains.

This bacterium achieved a final biomass of 1.28±0.10 g L⁻¹ and PHA content of 32.49±2.40% CDM. The extracted polymer was mainly comprised of 3-hydroxyhexanoate (*C₆*), 3-hydroxyoctanoate (*C₈*), 3-hydroxydecanoate (*C₁₀*), 3-hydroxydodecanoate (*C₁₂*), and 3-hydroxytetradecanoate (*C₁₄*) monomers at a ratio of 2:42:1257:17:1. These results collectively suggested that *P. putida* NBUS12 is a promising candidate for the biotechnological conversion of styrene into mcl-PHA.
Gut Environment

Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season

Jane Ludvigsen¹, Anbjørg Rangberg¹, Ekaterina Avershina¹, Monika Sekelja¹,², Claus Kreibich¹, Gro Amdam¹,³, Knut Rudi¹

¹Norwegian University of Life Sciences, Chemistry, Biotechnology and Food science department, Norway; ²Genetic Analysis Norway; and ³School of Life Sciences, Arizona State University, USA

Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout a season. The rationale for investigating the midgut/pyloric microbiota is its dynamic nature. Monthly sampling of a demographic homogenous population of bees was performed between May and October, with concordant recording of the honey bee diet. Mixed Sanger-and Illumina 16S rRNA gene sequencing in combination with a quantitative PCR analysis were used to determine the bacterial composition. A marked increase in α-diversity was detected between May and June. Furthermore, we found that four distinct phylotypes belonging to the Proteobacteria dominated the microbiota, and these displayed major shifts throughout the season. Gilliamella apicola dominated the composition early on, and Snodgrassella alvii began to dominate when the other bacteria declined to an absolute low in October. In vitro co-culturing revealed that G. apicola suppressed S. alvii. No shift was detected in the composition of the microbiota under stable environment/dietary conditions between November and February. Therefore, environmental/dietary changes may trigger the shifts observed in the honey bee midgut/pyloric microbiota throughout a season.

Changes in the Swine Gut Microbiota in Response to Porcine Epidemic Diarrhea Infection

Hyeon-Woo Koh¹, Myun Soo Kim², Jong-Soo Lee³, Hongik Kim², Soo-je Park¹

¹Department of Biology, Jeju National University, Republic of Korea; ²R&D Division, VITABIO, Inc., Republic of Korea; and ³College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Republic of Korea

The gastrointestinal tract of mammals is a complex ecosystem with distinct environments and comprises hundreds of different types of bacterial cells. The gut microbiota may play a critical role in the gut health of the host. We herein attempted to identify a microbiota shift that may be affected by porcine epidemic diarrhea (PED). We observed significant differences in microbiota between the control and PED virus (PEDV)-infected groups at both the phylum and genus level. Most commensal bacteria (i.e. Psychrobacter, Prevotella, and Faecalibacterium) in the healthy gastrointestinal tract were decreased due to dysbiosis induced by PEDV infection.
Intestinal Colonization by a \textit{Lachnospiraceae} Bacterium Contributes to the Development of Diabetes in Obese Mice

Keishi Kameyama\(^1\), Kikuji Itoh\(^2\)

\(^1\)Institute for Innovation, Ajinomoto Co., Inc., Japan; and \(^2\)Department of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan

The aim of the present study was to identify bacteria that may contribute to the onset of metabolic dysfunctions. We isolated and identified a candidate bacterium belonging to \textit{Lachnospiraceae} (strain AJ110941) in the feces of hyperglycemic obese mice. The colonization of germ-free \textit{ob/ob} mice by AJ110941 induced significant increases in fasting blood glucose levels as well as liver and mesenteric adipose tissue weights, and decreases in plasma insulin levels and HOMA-\(\beta\) values. These results indicated that the specific gut commensal bacterium AJ110941 influenced the development of obesity and diabetes in \textit{ob/ob} mice with genetic susceptibility for obesity.

Biofilm

Evaluation of Intraspaces Interactions in Biofilm Formation by \textit{Methylobacterium} Species Isolated from Pink-Pigmented Household Biofilms

Fang-Fang Xu\(^1,2,3\), Tomohiro Morohoshi\(^1,3\), Wen-Zhao Wang\(^1,2\), Yuka Yamaguchi\(^1\), Yan Liang\(^2\), Tsukasa Ikeda\(^1,3\)

\(^1\)Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Japan; \(^2\)Laboratory for Food Safety and Environmental Technology, Institutes of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China; and \(^3\)JST, CREST, Japan

Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified \textit{Methylobacterium} as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that \textit{Methylobacterium} was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus \textit{Methylobacterium}. Although all of the \textit{Methylobacterium} isolates formed low-level biofilms, the amount of the biofilms formed by \textit{Methylobacterium} sp. P-1M and P-18S was significantly increased by co-culturing with other \textit{Methylobacterium} strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.
The *Pseudomonas* Quinolone Signal Inhibits Biofilm Development of *Streptococcus mutans*

Tomohiro Inaba¹, Hiromu Oura¹, Kana Morinaga¹, Masanori Toyofuku¹, Nobuhiko Nomura¹
¹Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan

Bacteria often thrive in natural environments through a sessile mode of growth, known as the biofilm. Biofilms are well-structured communities and their formation is tightly regulated. However, the mechanisms by which interspecies interactions alter the formation of biofilms have not yet been elucidated in detail. We herein demonstrated that a quorum-sensing signal in *Pseudomonas aeruginosa* (the *Pseudomonas* quinolone signal; PQS) inhibited biofilm formation by *Streptococcus mutans*. Although the PQS did not affect cell growth, biofilm formation was markedly inhibited. Our results revealed a unique role for this multifunctional PQS and also indicated its application in the development of prophylactic agents against caries-causing *S. mutans*.

Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden

Katharina Lührig¹,², Björn Canbäck¹, Catherine J. Paul¹,³, Tomas Johansson¹, Kenneth M. Persson²,³, Peter Rådström¹
¹Applied Microbiology, Department of Chemistry, Lund University, Sweden; ²Sydsvetten AB, Sweden; ³Microbial Ecology Group, Department of Biology, Lund University, Sweden; and ⁴Water Resources Engineering, Department of Building and Environmental Technology, Lund University, Sweden

Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing *Proteobacteria* (82–87%), with 22–40% of all sequences being classified as *Sphingomonadaceae*. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing *Proteobacteria* (44%); only 0.6% of all sequences were classified as *Sphingomonadaceae*; and, in contrast to the other water meter communities, markedly more sequences represented *Nitrospira* and *Pedobacterium*. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as *Mycobacterium*, *Nocardia*, *Desulfovibrio*, and *Sulfuricurvum*. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.

Bacteria of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch Reactors

Akiko Hanada¹, Takashi Kurogi¹, Nguyen Minh Giang¹, Takeshi Yamada¹, Yuki Kamimoto², Yoshiaki Kiso³, Akira Hiraishi¹

¹Department of Environmental and Life Sciences, Toyohashi University of Technology, Japan; and ²EcoTopia Science Institute, Nagoya University, Japan

Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturing gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear.

A Comparative Study of the Bacterial Community in Denitrifying and Traditional Enhanced Biological Phosphorus Removal Processes

Xiao-Mei Lv¹,², Ming-Fei Shao¹,²,³, Chao-Lin Li¹,²,²,³, Ji Li¹,²,³, Xin-Fei Gao¹,², Fei-Yun Sun¹,²,³

¹Harbin Institute of Technology Shenzhen Graduate School, China; ²Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, China; and ³Shenzhen Public Technological Service Platform for Urban Waste Energy Regeneration, China

Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus “Accumulibacter” clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus “Accumulibacter” dominated in A-O sludge.
Methodology

A Comprehensive, Automatically Updated Fungal ITS Sequence Dataset for Reference-Based Chimera Control in Environmental Sequencing Efforts

R. Henrik Nilsson1, Leko Tedersoo1, Martin Ryberg2, Erik Kristiansson1, Martin Hartmann3,4, Martin Unterseher5, Teresa M. Porter6, Johan Bengtsson-Palme7, Donald M. Walker8, Filipe de Sousa1, Hannes Andres Gamper1, Ellen Larsson1, Karl-Henrik Larsson1, Urmas Kõljalg2,13, Robert C. Edgar8, Kessy Abarenkov3

1Department of Biological and Environmental Sciences, University of Gothenburg, Sweden; 2Institute of Ecology and Earth Sciences, University of Tartu, Estonia; 3Department of Organisms Biology, Uppsala University, Sweden; 4Department of Mathematical Statistics, Chalmers University of Technology, Sweden; 5Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Switzerland; 6Molecular Ecology, Institute for Sustainability Sciences, Agroscope, Switzerland; 7Ernst-Moritz-Arndt University, Institute of Botany and Landscape Ecology, Germany; 8Department of Biology, McMaster University, Canada; 9Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; 10Department of Natural Sciences, The University of Findlay, USA; 11Group of Plant Nutrition, Institute of Agricultural Sciences, Department of Environmental Systems Science, Switzerland; 12Natural History Museum, Norway; 13Natural History Museum, University of Tartu, Estonia; and 14Tiharon, USA

The nuclear ribosomal internal transcribed spacer (ITS) region is the most commonly chosen genetic marker for the molecular identification of fungi in environmental sequencing and molecular ecology studies. Several analytical issues complicate such efforts, one of which is the formation of chimeric—artificially joined—DNA sequences during PCR amplification or sequence assembly. Several software tools are currently available for chimera detection, but rely to various degrees on the presence of a chimera-free reference dataset for optimal performance. However, no such dataset is available for use with the fungal ITS region. This study introduces a comprehensive, automatically updated reference dataset for fungal ITS sequences based on the UNITE database for the molecular identification of fungi. This dataset supports chimera detection throughout the fungal kingdom and for full-length ITS sequences as well as partial (ITS1 or ITS2 only) datasets. The performance of the dataset on a large set of artificial chimeras was above 99.5%, and we subsequently used the dataset to remove nearly 1,000 compromised fungal ITS sequences from public circulation. The dataset is available at http://unite.ut.ee/repository.php and is subject to web-based third-party curation.

Application of Locked Nucleic Acid (LNA) Oligonucleotide–PCR Clamping Technique to Selectively PCR Amplify the SSU rRNA Genes of Bacteria in Investigating the Plant-Associated Community Structures

Makoto Ikenaga1, Masao Sakai1

1Faculty of Agriculture, Kagoshima University, Japan

The simultaneous extraction of plant organelle (mitochondria and plastids) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide–PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3' end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide–PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes.
Characterization of the Skin Microbiota in Italian Stream Frogs (Rana italica) Infected and Uninfected by a Cutaneous Parasitic Disease

Ermanno Federici1, Roberta Rossi1, Laura Fidati1, Romina Paracucchi1, Silvia Scargetta1, Elena Montalbani1, Andrea Franzetti2, Gianandrea La Porta1, Anna Fagotti1, Francesca Simonceti1, Giovanni Cenci1, Ines Di Rosa1

1Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy; 2Department of Earth and Environmental Sciences, University of Milano-Bicocca, Italy

In human and wildlife populations, the natural microbiota plays an important role in health maintenance and the prevention of emerging infectious diseases. In amphibians, infectious diseases have been closely associated with population decline and extinction worldwide. Skin symbiotic communities have been suggested as one of the factors driving the different susceptibilities of amphibians to diseases. The activity of the skin microbiota of amphibians against fungal pathogens, such as Batrachochytrium dendrobatidis, has been examined extensively, whereas its protective role towards the cutaneous infectious diseases caused by Amphibiocystidium parasites has not yet been elucidated in detail. In the present study, we investigated, for the first time, the cutaneous microbiota of the Italian stream frog (Rana italica) and characterized the microbial assemblages of frogs uninfected and infected by Amphibiocystidium using the Illumina next-generation sequencing of 16S rRNA gene fragments. A total of 629 different OTUs belonging to 16 different phyla were detected. Bacterial populations shared by all individuals represented only one fifth of all OTUs and were dominated by a small number of OTUs. Statistical analyses based on Bray-Curtis distances showed that uninfected and infected specimens had distinct cutaneous bacterial community structures. Phylogenotypes belonging to the genera Janthinobacterium, Pseudomonas, and Flavobacterium were more abundant, and sometimes almost exclusively present, in uninfected than in infected specimens. These bacterial populations, known to exhibit antifungal activity in amphibians, may also play a role in protection against cutaneous infectious diseases caused by Amphibiocystidium parasites.

Most Hydrocarbonoclastic Bacteria in the Total Environment are Diazotrophic, which Highlights Their Value in the Bioremediation of Hydrocarbon Contaminants

Narjes Dashti, Nedaa Ali, Mohamed Elyias, Majida Khanafer, Naser A. Sorkhoi, Samir S. Radwan

1Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait

Eighty-two out of the 100 hydrocarbonoclastic bacterial species that have been already isolated from oil-contaminated Kuwaiti sites, characterized by 16S rRNA nucleotide sequencing, and preserved in our private culture collection, grew successfully in a mineral medium free of any nitrogenous compounds with oil vapor as the sole carbon source. Fifteen out of these 82 species were selected for further study based on the predominance of most of the isolates in their specific sites. All of these species tested positive for nitrogenase using the acetylene reduction reaction. They belonged to the genera Agrobacterium, Sphingomonas, and Pseudomonas from oily desert soil and Nesiobacter, Nitratireductor, Acinetobacter, Alcanivorax, Arthrobacter, Marinobacter, Pseudoalteromonas, Vibrio, Diatia, Mycobacterium, and Microbacterium from the Arabian/Persian Gulf water body. A PCR-DGGE-based sequencing analysis of nifH genes revealed the common occurrence of the corresponding genes among all the strains tested. The tested species also grew well and consumed crude oil effectively in NaNO\textsubscript{3}-containing medium with and without nitrogen gas in the top space. On the other hand, these bacteria only grew and consumed crude oil in the NaNO\textsubscript{3}-free medium when the top space gas contained nitrogen. We concluded that most hydrocarbonoclastic bacteria are diazotrophic, which allows for their wide distribution in the total environment. Therefore, these bacteria are useful for the cost-effective, environmentally friendly bioremediation of hydrocarbon contaminants.
Effects of Hemagglutination Activity in the Serum of a Deep-Sea Vent Endemic Crab, *Shinkaia Crosnieri*, on Non-Symbiotic and Symbiotic Bacteria

So Fujiiyoshi, Hiroaki Tateno, Tomoo Watsuji, Hideyuki Yamaguchi, Daisuke Fukushima, Sayaka Mino, Makoto Sugimura, Tomoo Sawabe, Ken Takai, Shigeki Sawayama, Satoshi Nakagawa

In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding proteins, have recently been reported to play important roles in a wide array of biological processes, including the recognition and control of non-self materials. We herein assessed hemagglutination activity in the serum of a deep-sea vent endemic crab, *Shinkaia crosnieri*, which harbors chemosynthetic epibionts on its plumose setae. Horse and rabbit erythrocytes were agglutinated using this serum (opt. pH 7.5 and opt. temperature 15°C). Agglutinating activity was inhibited by eight kinds of sugars and several divalent cations, did not require any divalent metal ions, and remained detectable even after heating the serum at 100°C for 30 min. By using fluorescently labeled serum, we demonstrated that deep-sea crab serum components bound to the epibionts even in the presence of sugars. This study represents the first immunological assessment of a deep-sea vent endemic crab and demonstrated the possibility of a non-lectin-mediated symbiont-host interaction.

Nitrosomonas stercoris sp. nov., a Chemoautotrophic Ammonia-Oxidizing Bacterium Tolerant of High Ammonium Isolated from Composted Cattle Manure

Tatsunori Nakagawa, Reiji Takahashi

Among ammonia-oxidizing bacteria, *Nitrosomonas europa*-*pha*-like microbes are distributed in strongly eutrophic environments such as wastewater treatment plants and animal manure. In the present study, we isolated an ammonia-oxidizing bacterium tolerant of high ammonium levels, designated strain KYUHI-S, from composted cattle manure. Unlike the other known *Nitrosomonas* species, this isolate grew at 1,000 mM ammonium. Phylogenetic analyses based on 16S rRNA and *amoA* genes indicated that the isolate belonged to the genus *Nitrosonomas* and formed a unique cluster with the uncultured ammonia oxidizers found in wastewater systems and animal manure composites, suggesting that these ammonia oxidizers contributed to removing higher concentrations of ammonia in strongly eutrophic environments. Based on the physiological and phylogenetic data presented here, we propose and call for the validation of the provisional taxonomic assignment *Nitrosomonas stercoris*, with strain KYUHI-S as the type strain (type strain KYUHI-S = NBRC 110753 = ATCC BAA-2718).
Population Structure of Endomicrobia in Single Host Cells of Termite Gut Flagellates (Trichonympha spp.)

Hao Zheng¹, Carsten Dietrich¹, Claire L. Thompson², Katja Meuser³, Andreas Brune¹,²
¹Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Germany; and ²LOEWE Center for Synthetic Microbiology, SYMKRO, Philipps-Universität Marburg, Germany

The gut microbiota of many phylogenetically lower termites is dominated by the cellulolytic flagellates of the genus *Trichonympha*, which are consistently associated with bacterial symbionts. In the case of Endomicrobia, an unusual lineage of endosymbionts of the *Elusimicrobia* phylum that is also present in other gut flagellates, previous studies have documented strict host specificity, leading to the cospeciation of “*Candidatus Endomicrobium trichonymphae*” with their respective flagellate hosts. However, it currently remains unclear whether one *Trichonympha* species is capable of harboring more than one Endomicrobia phytype. In the present study, we selected single *Trichonympha* cells from the guts of *Zootermopsis nevadensis* and *Reticulitermes santonensis* and characterized their Endomicrobia populations based on internal transcribed spacer (ITS) region sequences. We found that each host cell harbored a homogeneous population of symbionts that were specific to their respective host species, but phylogenetically distinct between each host lineage, corroborating cospeciation being caused by vertical inheritance. The experimental design of the present study also allowed for the identification of an unexpectedly large amount of tag-switching between samples, which indicated that any high-resolution analysis of microbial community structures using the pyrosequencing technique has to be interpreted with great caution.

Identification and Detection of Prokaryotic Symbionts in the Ciliate Metopus from Anaerobic Granular Sludge

Yuga Hirakata¹,², Mamoru Oshiki³, Kyoei Kuroda³, Masashi Hatamoto³, Kengo Kubota⁴, Takashi Yamaguchi³, Hideki Harada³, Nobuo Araki¹
¹Department of Civil Engineering, National Institute of Technology, Nagaoka College, Japan; ²Department of Science of Technology Innovation, Nagaoka University of Technology, Japan; ³Department of Environmental Systems Engineering, Nagaoka University of Technology, Japan; ⁴Department of Civil and Environmental Engineering, Tohoku University, Japan; and ⁵New Industry Creation Hatchery Center (NICTe), Tohoku University, Japan.

The aim of the present study was to investigate the prokaryotic community structure of the anaerobic ciliate, *Metopus* sp. using rRNA sequencing, fluorescence *in situ* hybridization (FISH), and transmission electron microscopy (TEM). *Metopus* sp. was physically separated from anaerobic granular sludge in a domestic wastewater treatment plant and anaerobically cultivated for 7 d. 16S rRNA gene sequences from the prokaryotes *Methanoregula boonei* and *Clostridium aminobutyricum* were abundantly detected in *Metopus* ciliates. The FISH analysis using the oligonucleotide probes Mg1200b and Cla568 demonstrated that these prokaryotes were localized within *Metopus* cells. These results identify *M. boonei* and *C. aminobutyricum*-like prokaryotes as novel endosymbionts of *Metopus* ciliates.

Insecticide-Degrading *Burkholderia* Symbionts of the Stinkbug Naturally Occupy Various Environments of Sugarcane Fields in the Southeast Island of Japan

Kenako Tago¹, Takashi Okubo², Hideomi Ito³, Yoshitomo Kikuchi², Tomoyuki Hori¹, Yuya Sato¹, Atsushi Nagayama⁴, Kentaro Hayashi¹, Seishi Ikeda¹, Masahito Hayatsu¹

¹Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, Japan; ²Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Japan; ³Research Institute for Environmental Management Technology, AIST, Japan; ⁴Okinawa Prefectural Agricultural Research Center, Japan; and ⁵Memuro Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Japan

The stinkbug *Cavelius saccharivorus*, which harbors *Burkholderia* species capable of degrading the organophosphorus insecticide, fenitrothion, has been identified on a Japanese island in farmers’ sugarcane fields that have been exposed to fenitrothion. A clearer understanding of the ecology of the symbiotic fenitrothion degraders of *Burkholderia* species in a free-living environment is vital for advancing our knowledge on the establishment of degrader-stinkbug symbiosis. In the present study, we analyzed the composition and abundance of degraders in sugarcane fields on the island. Degraders were recovered from field samples without an enrichment culture procedure. Degrader densities in the furrow soil in fields varied due to differences in insecticide treatment histories. Over 95% of the 659 isolated degraders belonged to the genus *Burkholderia*. The strains related to the stinkbug symbiotic group predominated among the degraders, indicating a selection for this group in response to fenitrothion. Degraders were also isolated from sugarcane stems, leaves, and rhizosphere in fields that were continuously exposed to fenitrothion. Their density was lower in the plant sections than in the rhizosphere. A phylogenetic analysis of 16S rRNA gene sequences demonstrated that most of the degraders from the plants and the rhizosphere clustered with the stinkbug symbiotic group, and some were identical to the midgut symbionts of *C. saccharivorus* collected from the same field. Our results confirmed that plants and the rhizosphere constituted environmental reservoirs for stinkbug symbiotic degraders. To the best of our knowledge, this is the first study to investigate the composition and abundance of the symbiotic fenitrothion degraders of *Burkholderia* species in farmers’ fields.

Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae)

Kazutaka Takeshita¹,², Yu Matsuura¹, Hideomi Ito³, Ronald Navarro⁴, Tomoyuki Hori⁴, Teruo Sone¹, Yoichi Kamagata¹,², Peter Mergaert¹,², Yoshitomo Kikuchi²

¹Graduate School of Agriculture, Hokkaido University, Japan; ²Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Japan; ³Graduate School of Environmental Science, Hokkaido University, Japan; ⁴Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Japan; and ⁵Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique (CNRS), France

A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus *Burkholderia*, called the “stinkbug-associated beneficial and environmental (SBE)” group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a *Burkholderia* symbiont. Despite this recent finding, the phylogenetic position and biological nature of *Burkholderia* associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the “plant-associated beneficial and environmental (PBE)” group of *Burkholderia*, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamily Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with *Burkholderia* evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.
Editorial Board (2015-2016)

Editor-in-Chief
Yoichi Kamagata, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Senior Editors
Koki Toyota, Tokyo University of Agriculture and Technology, Koganei, Japan
Shin Haruta, Tokyo Metropolitan University, Hachioji, Japan
Satoshi Hanada, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Ken Takai, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
Hiroyuki Futamata, Shizuoka University, Hamamatsu, Japan

Managing Editors
Keizo Shimada (Manuscript Reception), Tokyo Metropolitan University, Hachioji, Japan
Shigeto Otsuka (Online Journal), The University of Tokyo, Tokyo, Japan
Takashl Yoshida (Online Journal), Kyoto University, Kyoto, Japan
Seigo Amachi (Manuscript Edition), Chiba University, Matsudo, Japan
Takashl Narihiro (Manuscript Edition), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Koji Mori (Manuscript Edition), NITE Biological Resource Center (NBRC), Kisarazu, Japan
Yoshinori Sato (Manuscript Edition), National Institutes for Cultural Heritage, Tokyo, Japan
Yasuhiro Tanaka (Manuscript Edition), University of Yamanashi, Kofu, Japan
Akihiro Saito (Manuscript Edition), Shizuoka Institute of Science and Technology, Shizuoka, Japan
Noriklan Momma (Manuscript Edition), Institute for Horticultural Plant Breeding, Matsudo, Japan
Satoko Shinozaki-Yabana (Manuscript Edition), National Institutes for Cultural Heritage, Tokyo, Japan
Masaki Shintani (Japanese Series), Shizuoka University, Hamamatsu, Japan
Hiroyuki Kimura (Japanese Series), Shizuoka University, Shizuoka, Japan
Eri Nasuno (Japanese Series), Utsunomiya University, Utsunomiya, Japan

Associate Editors
Chih-Yu Chiu, Academia Sinica, Taipei, Taiwan
Jongsik Chun, Seoul National University, Seoul, Korea
Jang-Cheon Cho, Inha University, Incheon, Korea
Wen-Tso Liu, University of Illinois at Urbana-Champaign, Champaign, IL, USA
Hiromitsu Furuya, Akita Prefectural University, Akita, Japan
Natsuko Hamamura, Ehime University, Matsuyama, Japan
Yasufumi Hikichi, Kochi University, Nangoku, Japan
Akira Hiraishi, Toyohashi University of Technology, Toyohashi, Japan
Shir-Ly Huang, National Central University, Jhongli City, Taiwan
Elena P. Ivanova, Swinburne University of Technology, Melbourne, Australia
Junichi Kato, Hiroshima University, Higashi-Hiroshima, Japan
Bon Kimura, Tokyo University of Marine Science and Technology, Tokyo, Japan
Staffan Kjelleberg, The University of New South Wales, Sydney, Australia
Ken-ichi Kucho, Kagoshima University, Kagoshima, Japan
Yukari Kuga, Hiroshima University, Higashi-Hiroshima, Japan
Ken Kurokawa, Tokyo Institute of Technology, Yokohama, Japan
Mei-Chin Lai, National Chung Hsing University, Taichung, Taiwan
Shuang-Jiang Liu, Institute of Microbiology Chinese Academy of Sciences (IMCAS), Beijing, China
Fumito Maruyama, Tokyo Medical and Dental University, Tokyo, Japan
Kiwamu Minamisawa, Tohoku University, Sendai, Japan
Keisuke Miyauchi, Tohoku Gakuin University, Tagajo, Japan
Manuscripts should be written in clear and simple English and be double-typeset articles. Supplemental material for publication is not posted until the final, typeset manuscripts are accessible from the M&E website. No corrections/changes M&E posts online PDF file versions of manuscripts that have been peer before the deadline, the paper may be printed without corrections. When the manuscript has been accepted, the Managing Editor will correct authors. A manuscript returned to the author for revision should be resubmitted the manuscript to two referees for criticism and further communication with Senior Editor will choose an Associate Editor who is in charge of sending who is responsible for making a final decision on its acceptability. The Submitted manuscripts are sent to a Senior Editor with appropriate expertise, 4. Review process a submitted manuscript. Authors who are unsure of proper English usage by-step instructions for submitting a manuscript via the online submission total file size (main document, figures, text format (RTF), figures in high resolution EPS or TIFF. PDF file for the first use of the system. Most of file types are supported, but the following accepted). A user ID and password are required and can be obtained on mc.manuscriptcentral.com/jsme2 (E-mail submissions will not be accepted).

All manuscripts must be submitted electronically via the online manuscript. Unless the Copyright Transfer Agreement is executed, M&E has authority to act on their behalf in all matters pertaining to publication of edgements. All authors also must have agreed that the corresponding author (M&E) is an international journal devoted to communications, unpublished data or manuscripts in preparation (can be mentioned and is not under consideration and informative as possible. Multiple authors with different addresses must of a published lecture, review, or thesis) and is not under consideration number consecutively. The references should not include personal communications. Reviews are completely invited. Acceptable styles are shown in the examples below. For additional styles et al.

JAPANESE SOCIETY OF MICROBIAL ECOLOGY
President (2015–2016): Kiwamu Minamisawa, Tohoku University
Secretary (2015–2016): Keishi Senoo, The University of Tokyo
Treasurer (2015–2016): Tatsunori Nakagawa, Nihon University
International affairs (2015–2016): Kazuhiro Kogure, The University of Tokyo
Public relations (2015–2016): Michinari Sunamura, The University of Tokyo

Office of the Society (Journal subscription should be requested to): Shigeru Chohnan
College of Agriculture, Ibaraki University, 3-21-1, Chuo, Ami, Inashiki, Ibaraki, 300-0393, Japan
Tel/Fax: +81-29-888-8672; E-mail: jsme.office@gmail.com

JAPANESE SOCIETY OF SOIL MicroBIOLOGY
Secretary (2014–2015): Tomoyoshi Hashimoto, NARO Agricultural Research Center
Treasurer (2014–2015): Yuko Suga, NARO Agricultural Research Center

TAIWAN SOCIETY OF MICROBIAL ECOLOGY
President (2014–2018): Shir-Ly Huang, National Central University
Vice President (2014–2018): Jyh-Yih Leu, Fu-Jen Catholic University
Secretary-General (2014–2018): Gia-Luen Guo, Institute of Nuclear Energy Research

JAPANESE SOCIETY OF PLANT MICROBE INTERACTIONS
Chair of Society: Shigeyuki Tajima, Kagawa University
Secretary-General: Makoto Hayashi, RIKEN Center for Sustainable Resource Science
Treasurer: Yosuke Umehara, National Institute of Agrobiochemical Sciences

This journal is partly subsidized by the Grant-in-Aid for Publication of Scientific Research Results from the Japan Society for the Promotion of Science (JSPS). The back cover was designed by Hiroko Uchida.
Microbes and Environments

Instructions for Authors

Microbes and Environments (M&E) is an international journal devoted to the publication of original and minireview articles regarding all aspects of research on microbial ecology and environmental microbiology. Articles can deal with culturable and non-culturable forms of any type of microorganism: Bacteria, archaea, fungi, yeasts, protozoa, algae and viruses. M&E is an open access journal (for online articles), published by Japanese Society of Microbial Ecology (JSME), Japanese Society of Soil Microbiology (JSSM), and Taiwan Society of Microbial Ecology (TSME), and Japanese Society of Plant Microbe Interactions (JSPMI).

1. Types of papers published

Four types of papers are published: Full-length Regular Papers, Short Communications, Review papers, and Short Reviews. Regular Papers and Short Communications must represent a substantial part of original research that has not been published before (except in the form of an abstract or as part of a published lecture, review, or thesis) and is not under consideration for publication elsewhere. Reviews are normally invited. Authors interested in submitting a Review should write to the Editor-in-Chief (E-mail: kmamagata@uninest.go.jp) for approval before its submission. Short Reviews are completely invited.

2. Copyright and agreement for publication

All authors of a manuscript must have agreed to its submission and are responsible for its contents, including appropriate citations and acknowledgements. All authors also must have agreed that the corresponding author has authority to act on their behalf in all matters pertaining to publication of the manuscript. Unless the Copyright Transfer Agreement is executed, M&E will not publish the article. The author guarantees that the manuscript will not be published elsewhere in any other language without the written permission of the copyright holders. Copyright for supplemental material remains with the author who holds the license permitting posting by M&E will be sent, along with the article copyright transfer agreement, to the corresponding author for signing at the acceptance stage.

3. Submission procedure

All manuscripts must be submitted electronically via the online manuscript submission and peer review system at the following URL: http://mc.manuscriptcentral.com/jsme2 (E-mail submissions will not be accepted). A user ID and password are required and can be obtained on the first use of the system. Most of file types are supported, but the following types are recommended: main document in Microsoft Word or generic rich text format (RTF), figures in high resolution EPS or TIFF. PDF file for main documents. Total file size (main document, figures, tables, and supplemental materials) should not exceed 20 MB. Step-by-step instructions for submitting a manuscript via the online submission system are available. Authors in Japan should give their address in Japanese as well as in English. The Editorial Office will confirm the editorial style of a submitted manuscript. Authors who are unsure of proper English usage should have their manuscripts checked by someone proficient in the English language.

4. Review process

Submitted manuscripts are sent to a Senior Editor with appropriate expertise, who is responsible for making a final decision on its acceptability. The Senior Editor will not return the manuscript to the author if the decision is negative. All manuscripts are sent to two referees for criticism and further communication with authors. A manuscript returned to the author for revision should be resubmitted to the Associate Editor within 6 weeks. Otherwise it may be considered withdrawn or treated as a new submission.

5. Accepted manuscripts

When the manuscript has been accepted, the Managing Editor will correct the style and the format of the manuscript. The corresponding author will receive a galley proof for one revision. If the galley proof is not returned before the deadline, the paper may be printed without corrections.

6. Advance Publication online

M&E posts online PDF file versions of manuscripts that have been peer reviewed and are in the process of being copyedited. Advance publication manuscripts are accessible from the M&E website. No corrections/changes to the PDF manuscripts are accepted. Accordingly, authors may find differences between M&E advance publication manuscripts and the final, typeset articles. Supplemental material for publication is not posted until the final, typeset article.

7. Preparation of manuscripts

Manuscripts should be written in clear and simple English and be double-spaced for all text on A4 size sheets. All pages must be numbered consecutively, starting with the title page. The lines of the text should be numbered to aid the reviewers. The arrangement of manuscripts for Regular Papers should be in the following order: Title, Author’s name and Address, Abstract, Key words (no more than 5 words), Introduction, Materials and Methods, Results, Discussion (or Results and Discussion), Acknowledgements, References, Tables, Figure legends and Figures. Use section headings (e.g., Introduction, Materials and Methods etc.) in the main text. The Abstract should not exceed 250 words for a Regular Paper, and 100 words for a Short Communication.

Title page: The title page should include the title, the author’s full name, affiliations, address, and the running head. The title should be as concise and informative as possible. Multiple authors with different addresses must include their respective addresses with numerals. Place an asterisk after the name of the author to whom correspondence regarding the manuscript should be addressed. The abbreviated running head must not exceed 40 characters.

Main document: Subheadings can be used in the Materials and Methods and Results sections of Regular Papers. Use of footnotes is not recommended, but abbreviations, when necessary, can be defined in a single footnote inserted in the first page of the text.

References: Arrange the citations in alphabetical order by first author, and number consecutively. The references should not include personal communication, unpublished data, or data obtained before the manuscript is submitted (parenthetically). All listed references must be cited parenthetically by number in the main text. Journal names should be abbreviated according to the Chemical Abstracts Service Source Index (CASSI). Each citation must be complete: Do not use ibid, idem, etc. Articles written by more than 10 authors should be “2 et al.” Articles written by less than 4 authors, and “et al.” Acceptable styles are shown in the examples below. For additional styles and formats, consult recent issues of M&E.

Figures: All figures including drawings and photographs should be of their intended publication size, and numbered consecutively. Indicate the figure numbers and first-author’s name in the margin. Titles and legends of figures must be typed separately. Graphs should be made from finished data. Do not include graphs that are not required in the manuscript. The maximum size permitted for an individual file is 10 MB. Supplemental material may be posted by M&E for any types of paper. M&E encourages that supplemental material be uploaded in the final submission as a single PDF or typesetting. Photographs should be glossy and rich in contrast. Give scales in microphotographs: Do not report enlargement factors in legends. Figures in 1-column (maximum width ca. 8.3 cm) of the printed page are strongly recommended. The maximum width for a 2-column figure should be 17.6 cm.

Tables: Each table must be typed on a separate page, and all tables should have titles. Abbreviations, when necessary, should be defined in table footnotes. The maximum width of a table on the printed page should be 17.6 cm, and thus the author should prepare tables as concise as possible.

Supplemental material: Supplemental material may be posted by M&E for accepted manuscripts submitted after the start date. Instead, authors will NOT be charged for English proofreading. For a corresponding author who is a JSME/JSSM/TSME/JSPMI member, page charges are currently ¥4,000 per page. For a nonmember corresponding author, page charges are currently ¥8,000 per page. Color pages will be printed at the author’s expense. The cost of publishing colored figures needs to be borne by the authors. The costs are ¥50,000 for each printed color page. The authors may choose a lower-cost color page only for publication in the online version of M&E. In this publication style, the page numbers of the printed journal is in black for all tables, etc. The color graphs in the online journal is full-color.

9. Permission

The corresponding author is responsible for obtaining permission from both the original author(s) and the publishers (i.e., the copyright owner) to reproduce, adapt, modify, or make derivative works from previous publications. Statements indicating that the material is being reprinted with permission must be included in the relevant figure legend or table footnote of the manuscript. Reprinted text must be enclosed in quotation marks, and the permission statement must be included as running text or indicated parenthetically in the legend.

The latest full version of Instructions for Authors is also available through the Internet at the following URL: http://www.microbial-ecology.jp/files/user/Instructions full latest.pdf

Copyright (C) 2015, Japanese Society of Microbial Ecology (JSME) / Japanese Society of Soil Microbiology (JSSM) / Taiwan Society of Microbial Ecology (TSME) / Japanese Society of Plant Microbe Interactions (JSPMI). All rights reserved